第二批“数据要素×”典型案例之九 | 公交数智化运营助力提升市民生活品质
公共交通作为城市交通的骨干,为市民提供高效、环保的出行方式,缓解交通拥堵,降低环境污染,促进城市可持续发展。公交行业在传统系统架构下,存在营运资源利用不充分、难以形成科学高效的线网规划与调优能力等问题。重庆市公共交通控股有限公司通过架构重塑、数据治理和场景构建等措施,实现数据资源共享、多跨场景协同管理、人车资源统筹优化,满足市民高品质、多元化出行需求,促进了重庆公交的高质、高速、高效发展。
一是新型数字化架构推进数据资源汇聚、治理。打造终端互联感知体系,实现包括司机信息、车辆信息、客流量信息、乘客满意度与投诉信息、线路高低峰客流量信息、停车场信息等“人、车、站、线、场”全要素的感知互联。同时,整合内部运营数据和高德出行、气象地灾预警等外部数据,实现日均接入数据4300万条,日均调用数据110余万条,累计接入数据125.43亿条。持续开展数据治理,建立主数据规范,明确主数据属性名称、分类定义、数据类型、管理流程等,从数据全生命周期的角度管控数据、治理数据。同时,根据业务需求,建立运营、安全、机务、服务等统计指标体系,严谨明确各项指标的业务定义、计算方式、应用场景,确保公交集团统计指标的准确性、权威性。
图1 重庆中心城区公交运营实时信息
二是运营数字化升级实现人车供需匹配。通过升级智能调度系统,实现远程集中调度、多方式车辆监控、车辆到站时间预测、运营日报自动生成等数字化应用。打通与安全监控系统、智能维保系统、岗前监测系统等系统接口,实现跨部门、跨场景的协同管理。通过系统升级,调度班次自动生成率、人均发车班次、单人单日最高发车班次均得到大幅提升。通过重庆公交数字运营中心,完成站点客流分析、班次分析、热力图、线网覆盖率、线路效益分析、公轨接驳客流人次等分析功能,以供需平衡为导向,主动优化调整线网及运营组织方案,实现“客流、运力、路况”资源匹配的智能排班。基于区域化运营理念,对多线路多班次进行混合调度,实现广域不均衡出行需求的动态精准匹配和区域人车资源统筹优化。
图2 公交线网优化系统
三是全面构建数字交通新场景。对外构建互联网“愉约出行”平台,通过发布车辆到站时间动态信息和推出手机移动支付系统,方便市民公交出行,满足高品质多元化出行需求,集观光巴士、机场快车、定制公交等出行方式于一体,共开通定制及观光类线路130余条,年运送乘客2000余万人次。建立需求响应公交运营服务模式,在固定服务区域内根据出行需求开行不固定线路,利用最少的车辆、线路资源,解决了区域覆盖,实现线上+线下服务,承诺乘客最短出行时间,让市民出行更加便捷高效。对内打造“重庆公交生产助手”应用,面向驾驶员和各级管理人员提供查询、自助服务、审批等移动应用相关的90余项功能。截至目前,移动端员工用户数量2.5万余人,日均访问量24万人次,日推送信息8.5万余条。
图3 响应公交移动客户端
自2020年以来,重庆公交集团优化线路约800条次。公交日均客流量于2022年超302.7万人次,于2023年超344万人次。目前,重庆公交集团拥有运营车辆8820辆,日均运行班次9.6万班次,日均运行里程140万公里,公交出行分担率为35.3%,以全国城市第十一位的车辆规模运送全国第二的客流,运营效率位居全国前列。
第二批“数据要素×”典型案例之十 | 能源物流数智化管理 引领危化运输新模式
危险化学品运输是物流行业中一个特殊的组成部分,相对普通的物流来说,危险品的物流专业技术要求更高,更需要全面、准确、可靠的信息管理和控制。针对危险化学品运输作业安全风险高、车辆运行分散、通行限制多等行业特点,新奥能源物流有限公司通过集成人、车、路信息,构建“运途云”危货运输数智管理系统,全方位助推危货运输企业安全管理升级和运营降本增效,形成“数据驱动、科技护航”的危化品运输新模式。
一是汇集危化运输全要素数据。新奥能源物流与交通运输部公路院、清华大学、吉林大学、武汉理工大学联合研发岗前一体机、出岗一体机和在岗手环监测设备,通过签订知情协议书获得驾驶数据采集授权,实现驾驶员“速度估计、选择反应、深度知觉、注意力分配、紧急反应、驾驶风格、身体状态、风险感知”等指标的动态评估,累计收集驾驶员动态监测数据5000余万条,通过数据模型分析将驾驶员健康数据情况在运途云数智平台看板进行展现,实现对驾押人员的前置主动安全管理。已累计接入全国近70%的LNG运输槽车,服务3座沿海LNG接收站、1000余家危化品运输企业和工业园区。
二是建设“运途云”危货运输数智管理系统。为企业提供人车实时在线监控、安全报警、成本管理、效益分析及线上通行审核等全方位服务。危货导航功能累计安全护航运输任务15000余次,未发生安全事故。车辆出岛实现提前线上审批,线下等待时间缩短77%,车辆周转效率大幅提升。通过政企联动,将LNG接收站外运车辆安全综检数据进行线上留痕,与高速交警线上审批端口打通。同时,平台采用了先进的数据加密技术,确保数据在流通过程中的安全性,消除了数据泄露风险。
图 “运途云”危货运输数智管理系统
第二批“数据要素×”典型案例之十一 | “以数补链”发展新质生产力 赋能车路云一体化产业能级提升
车路云一体化是包括云计算、人工智能大模型等新一代信息技术深度赋能汽车和交通产业的战略性新兴产业,未来发展潜力巨大。智能驾驶汽车测试存在数据采集成本高、周期长、高价值场景缺乏等痛点问题,浙江德清莫干山智联未来科技有限公司、德清县数据局、阿里云计算有限公司、杭州数据交易所有限公司等单位联合构建以车路一体化场景数据库为核心的数据要素流通平台,通过融合红绿灯、交通事故、道路施工等公共数据和路侧车路协同行业数据,提供智能驾驶仿真场景库,基于先导区已建成的智能网联汽车封闭测试场和全域开放测试道路,补全“仿真测试-封闭测试-开放道路测试”的智能驾驶研发测试服务全链条,构建“以数补链、以链优数”的产业协同创新生态。
图1 车路云一体化数据要素流通路径
一是以授权运营促行业数据流通。依托省、市公共数据授权运营平台,针对数据产品开发所涉及的字段实施分类分级脱敏管理,将脱敏后的交通信号灯、道路施工、交通事故等公共数据,融合路侧设备采集和感知融合后获取的路侧交通参与者、路况感知等数据,为智能驾驶和交通等行业大模型训练提供了智能数据底座。
二是以场景驱动补数据服务链条。研发上架智能驾驶仿真场景库、路口车流量统计等系列数据产品,服务自动驾驶系统仿真测试、交通违法治理辅助决策、优化能源基础设施规划与选址等场景。截至目前,累计为20余家车企、交通研发企业和高校提供服务。
三是以标准体系筑数据安全底线。聚焦车联网数据安全生命周期,率先出台数据脱敏和分类分级两方面地方标准规范,创新车路云一体化数据要素流通平台全流程监管技术,实现数据“采存算管用”的全过程安全保障,筑牢数据安全合规利用底线。
四是以登记交易引数据资产增值。有关数据产品通过上架杭州数据交易所等交易机构,完成合规认证和数据要素流通交易闭环。实现国家级车联网先导区行业数据产品场内交易。
图2 智能驾驶仿真库数据产品应用效果
第二批“数据要素×”典型案例之十二 | 搭建普惠金融综合服务平台 破解中小微企业融资难点问题
为完善西藏数字金融基础设施,加快涉企信用信息归集共享,有效激活信用数据价值,西藏高驰征信有限责任公司基于区内涉企信息数据,搭建了西藏自治区普惠金融综合服务平台“藏金普惠”,为西藏各级政府部门、金融机构和企业提供可靠、高效的征信服务,有效推进西藏高原经济的高质量发展。
一是汇聚多源数据。经政府部门同意,汇聚拉萨海关、税务局、科技厅、经信厅等12个部门数据;与自来水公司、燃气热力公司建立合作关系,通过接口对接、线下对接等方式,融汇水、气、热力等民生数据;通过与企业签订授权协议,获取平台内企业相关数据。汇聚整合工商、司法、住房、银税、专利、企业等多源数据,形成了涵盖10大领域100多个维度的企业信用专题库,实施“一企一库”管理,结合监控、定时更新等机制,实现数据高效流转。
二是打造综合金融服务矩阵。基于业务场景需求,利用机器学习、自然语言处理、区块链等技术,构建客户画像模型、反欺诈模型、经营准入模型、客户评分模型等信用模型,依托藏金普惠平台正在与银行联合开发税务贷、政采贷、公积金贷等定制化产品,打造“全线上、全场景、全主体、全周期”的综合金融服务矩阵,以数据“可用不可见”方式为金融机构和政府部门提供定制化信用报告,实现金融政策、产品、服务“一站式”供给。
三是搭建数据资源管理服务平台。依托数据流通机制,遵照数据使用权限,平台面向政府部门、金融机构与企业,实现数据交换、服务的统一接入和开放。基于平台提供加解密、鉴权、协议转换、注册服务、身份认证、异常处理、服务路由、日志管理等服务。通过数据接口管理、元数据追溯、数据分类分级等管理方式,结合统一的对外标准化服务封装,将以往各系统、各平台之间点对点连接形成的网状拓扑结构,优化为星形拓扑结构,大幅降低数字金融服务网络复杂度,提高了各应用场景数字金融服务研发效率。
图 “一企一库”企业信用主题库架构
目前,藏金普惠平台已汇集涉企数据超1亿条,入驻企业超1.1万家,占比达到西藏中小企业总数的15%,入驻金融机构网点345个,占比达到西藏金融机构网点的99%,发布金融产品超200个,融资申请超2100笔,授信额度超340亿元。
第二批“数据要素×”典型案例之十三 | 科技文献数据挖掘 助力科研效率提升和大模型训练
科技文献为科学研究提供了丰富的研究资源与参考资料,是学术交流的重要媒介。科技创新需要大量科技文献数据支持,但传统文献文档内容结构松散,信息分布呈现碎片化特点,导致数据筛选整合低效,严重影响科研效率。中国科学院文献情报中心联合相关单位借助人工智能技术,深度挖掘科技文献中的数据价值,构建覆盖多领域的高质量数据集,支持科技领域大模型建设,助推科研范式变革。
一是合规归集高质量科技文献数据。在遵循知识产权法规和国际通行规范的基础上,充分发挥中国科学院文献情报中心和国家科技图书文献中心(NSTL)的学科优势,与领域内的科学家紧密协作,汇聚大量权威可靠的科技文献数据及专业领域知识。通过对科技文献全文数据中的文本、图表、公式等进行多模态解构,构建了一个覆盖多个学科的综合知识资源库,不仅包含了传统的文本信息,还涵盖了图表和公式等非文本元素,形成一个全方位的多模态知识体系。目前公益学术平台(PubScholar)已归集1.8亿条文献元数据,逾8065万篇完整的文献全文,为科研人员提供了丰富的研究素材和知识支持。
二是突破关键技术研发科技文献人工智能引擎(SciAIEngine)。提出了掩藏句子模型(Masked Sentence Model)与两阶段方案实现文本中的知识抽取,基于层次分类器集群实现千级类目中图法分类,通过嵌入词典和词性特征实现关键词识别,基于小样本数据利用半监督迭代学习等技术实现命名实体识别。利用这些创新技术,提升文本挖掘能力,研发科技文献人工智能引擎(SciAIEngine)。形成一系列可供扩展应用的软件、数据、解决方案和工具集,并提出了一套从科技文献中挖掘领域知识与科学数据的流程方法。
三是深度挖掘科技文献内容。利用科学人工智能引擎对优选文献进行深度挖掘,提取包括关键科学数据、实验结果等硬信息,提取理论框架、研究方法等软知识。通过深度挖掘科技文献的专业领域本体知识、科学数据、观点倾向等科技文献内容,建立细粒度科技文献内容与句子、段落、图表、全文之间的循证关系,支持文献内容溯源。将细粒度知识与科学数据进一步融合、精选、对齐、补齐,构建高质量语料库、专业化领域知识本体库、适用人工智能的科学数据集和研究观点倾向库。当前已支持上海药物所从文献中挖掘药物靶标数据,支撑新药研发;与西南交大合作挖掘二维材料属性数据,赋能材料研发;与东北地理所合作挖掘木质纤维素生物降解知识,助力黑土地生物质高效利用。
四是建设科技文献大模型。基于专业化领域知识本体库、适用人工智能的科学数据集、研究观点倾向库构建支撑智能科研(AI4S)的科技文献知识底座,支持AI4S模型的训练,为AI4S智能模型假设的提出、预测的验证和推理的监督提供知识基础。与头部人工智能企业合作,集成知识图谱、语义搜索等功能,打造支持智能化科研的解决方案。同时开发医学、化学领域的垂直大模型,为科技创新提供知识数据支持。其中,科技文献大模型提高论文调研效率10倍以上,论文研读有效率超90%。
图1 AI4S知识底座
图2 PubScholar公益学术平台