第二批“数据要素×”典型案例之三 | 畜牧产业大脑助推畜牧业高质量发展
畜牧业一头连着居民“菜篮子”,一头连着农民“钱袋子”,事关国计民生。我国畜牧业产业链条长、生产周期长,存在产能调控难度大、动物疫病防控和畜禽产品质量安全监管难、供需信息不对称等问题。浙江省畜牧农机发展中心构建了集行业分析、监测预警、数据服务于一体的“浙江畜牧产业大脑”平台,为省畜牧管理部门及生产经营主体提供生产、经营、管理等数据支撑。
一是建成一体化畜牧大脑数据仓。通过与市场监管、银保监、生态环境等8部门数据共享、业务对接,建设畜牧大脑数据仓。目前已汇集数据2.2亿条,覆盖12类畜牧兽医业务主体,日访问量20万次以上。以生猪模块为例,在养殖环节实时汇聚省、市、县生猪存栏量、调入量、出栏量及价格动态等数据,指导生猪科学生产;在检疫、屠宰、调运环节汇聚产地检疫、屠宰检疫、肉品品质检验等数据,实现从养殖到市场全流程追溯。
二是构建智能高效风险预警体系。依托数据仓,开发稳产保供智能模块,通过产能测算模型,智能感知和分析生猪产量、猪肉价格、头均盈亏等数据,提前6个月预测研判生猪产能、猪肉供应的波动风险,辅助畜牧管理部门提前部署稳产稳价调控措施。开发疫病风险管理模块,密切监测屠宰、检疫、调运等环节的动态数据,设置非洲猪瘟、口蹄疫检测等19个风险点,制定36条触发规则,实时研判分析风险情况,并精准推送至养殖、调运等畜牧主体及管理部门,实现重大风险早发现早处置。
三是推动数据要素增值赋能。在畜产品信息追溯方面,与市场监管部门协同,实现养殖场信息向产地检疫人员全推送,省内检疫、备案等信息向屠宰企业、驻场官方兽医全推送,屠宰企业检疫申报、检测、宰前检查等全程信息向驻场官方兽医全推送;同时与卫健部门协同,深化数据共享、风险评估、联合处置等工作,做好公共卫生安全追溯,守好人病兽防关口。在解决农户需求方面,为农户精准推送保险信贷、价格行情等服务,推动农户生产管理、检疫申报、受理、出证、扫码等业务办理“零跑腿”,实现贷款一键申请,保险一键参保、一键赔付,2023年,已辅助249个养殖场抵押授信7.21亿元。
图 浙江畜牧产业大脑首页
2023年,平台发布产能预警共计790次,处置安全风险2.16万次,帮助养殖户降低经济损失6500多万元。基于数据分析大幅提升检疫效率,单个屠宰企业日均检疫、检验出证时间分别缩短98分钟(降幅68.5%)和104分钟(降幅70.1%)。
第二批“数据要素×”典型案例之四 | 产业链数据要素应用 赋能产业协同效率提升
煤炭是我国的基础能源,在保障国家能源安全中发挥着“压舱石”的重要作用。当前,煤炭产业生产、物流、金融等环节数据分散、孤立,导致产运信息不对称、服务不到位等情况频现。国能互通内蒙古网络科技有限公司通过整合煤炭产业从生产、运输到消费端的各环节数据,开发了能源产业智慧服务平台,为煤炭能源企业提供精准对接、风险评估等数据服务,助力煤炭产业供应链高效精准对接,显著提升煤炭等能源产业协同效率。
一是整合产业数据资源。基于企业授权,获取企业的行为数据;通过合作协议,获取矿场、贸易商、电厂、钢厂、加工、金融机构等企业的生产、交易、物流、仓储、支付结算、票证等数据;通过与公路、铁路、港口等部门进行深入合作,基于合作协议获取“公铁水”运输数据。然后对数据进行标准化清洗、多维验证等处理,形成煤炭产业数据资源,每日新增各类数据近100万条。
二是丰富数据应用场景。通过分析企业生产经营、交易订单、物流等数据,形成企业经营画像,为金融机构提供金融服务额度测算、风险控制实时预警等服务,帮助中小企业拓展高效、低成本的供应链融资渠道。通过打通生产、流通到消费等各环节数据,构建智能的辅助决策体系,为产业链上下游企业提供优质客户筛选与管理、客户经营画像分析等服务,帮助企业实现精准运营管理。
三是多手段保障数据安全。联合编制数据存证、脱敏、加密、存储、使用等多项标准规范。建立合规审查、分级分类、交叉验证等管理机制,在支付、交易、物流、身份认证等环节应用区块链技术,确保全部数据的安全性和不可篡改性。严格遵循用户授权及数据最小范围流出原则,流通数据以系统生成或加工处理后的数据为主,禁止原始数据流出。
图1 数字化生态平台作为产业链连接器
目前该平台已为5000多家煤炭行业用户提供了数据服务,累计服务煤炭交易量8.8亿吨,交易金额2600亿元,有效支撑煤炭行业提质增效。平台与新华社等单位发布5项能源价格指数,为市场提供定价参考,为政府宏观调控和行业监测提供支撑。
图2 全场景全流程数字化供应链服务
第二批“数据要素×”典型案例之五 | 多源餐饮数据实时精准服务 赋能餐饮行业数字化增效
餐饮行业是促消费、惠民生、稳就业的重点领域,与人民的生命健康和生活水平紧密相关。当前,连锁餐饮行业面临经营数据收集难、数据化运营能力较弱等问题。企迈科技有限公司通过整合线上线下企业业务数据和线上用户行为数据,基于实时数据分析,为餐饮企业提供智能补货、门店经营分析等数据服务,赋能企业精细化运营,推动企业数字化转型。
一是多渠道采集汇聚数据。一方面,在消费者、品牌及平台协议授权的前提下,通过小程序、POS收银平台、第三方平台等渠道,采集涵盖订单、卡券、资产、营销以及其他日志等方面的相关业务数据;另一方面,基于企业合作协议,汇集餐饮商家经营管理中的营销活动、上架新品等对应的经营类数据。然后按照统一标准对数据进行整合治理,形成日增量约30TB、累计总量超过2PB的餐饮行业数据资源池。
二是开发覆盖经营全渠道的数据服务。基于用户行为数据,建立实时、全方位的用户标签体系,支撑企业为客户提供个性化的会员服务。基于商品销售、原材料库存等数据,构建门店智能补货与预警系统,为企业提供新品挖掘、销售预测、货品生命周期管理等货物服务。基于门店客流、财务、业绩等数据,打造门店全生命周期管理模型,为企业提供门店盈利评估、智能选址、业绩分析等门店服务。企业使用相关服务后,运营成本平均降低31.32%,用户拓展平均增长240.57%,订单增长提升121.89%,客单价提升14.50%。
三是强化数据全流程安全治理。数据资源从采集到汇聚、流通的整体过程中,敏感数据均采用源头脱敏和加密存储,对存储系统实行网络隔离。通过与专业安全机构合作,利用专用的数据处理平台进行整体的数据安全管控,涵盖脱敏、权限管控、审计、审批、水印等。建立分类分级、权限管控、安全培训与审计的企业数据安全制度,制定数据安全管理办法,设立系统安全、数据安全专人专岗。
图1 餐饮行业数据接入与应用
图2 经营分析驾驶舱
图3 全渠道数据融合分析
图4 数据治理流程